Pipeline

Expanded Access Policy

To learn about our expanded access policy, click here.

Related Publications

Hakonarson H, Kao C, Squires LA, et al. 6.61 PREDICTIVE VALUE OF GLUTAMATERGIC NETWORK GENE MUTATION TESTING FOR ATTENTION-DEFICIT/HYPERACTIVITY DISORDER IN CHILDREN AND ADOLESCENTS IN AN OUTPATIENT PSYCHIATRY SETTING. Journal of the American Academy of Child & Adolescent Psychiatry. 2016;55, S224.
http://www.jaacap.com/article/S0890-8567(16)31609-4/abstract

Elia J, Khan M, Kim C, et al. 6.67 GLUTAMATERGIC NETWORK GENE MUTATIONS IN ADOLESCENTS AND CHILDREN WITH ATTENTION-DEFICIT/HYPERACTIVITY DISORDER. Journal of the American Academy of Child & Adolescent Psychiatry. 2016;55, S226.
http://www.jaacap.com/article/S0890-8567(16)31615-X/abstract

Elia J, Glessner JT, Wang K, et al. Genome-wide copy number variation study associates metabotropic glutamate receptor gene networks with attention deficit hyperactivity disorder. Nature genetics. 2012;44(1):78-84.
https://www.ncbi.nlm.nih.gov/pubmed/22138692

Byrnes KR, Loane DJ, Faden AI. Metabotropic glutamate receptors as targets for multipotential treatment of neurological disorders. Neurotherapeutics. 2009;6(1):94-107.
https://www.ncbi.nlm.nih.gov/pubmed/19110202

Harvey BH, Shahid M. Metabotropic and ionotropic glutamate receptors as neurobiological targets in anxiety and stress-related disorders: focus on pharmacology and preclinical translational models. Pharmacol Biochem Behav. 2012;100(4):775-800.
https://www.ncbi.nlm.nih.gov/pubmed/21708184

Pitsikas N. The metabotropic glutamate receptors: potential drug targets for the treatment of anxiety disorders? Eur J Pharmacol. 2014;723:181-4.
https://www.ncbi.nlm.nih.gov/pubmed/24361306

Yasuhara A, Chaki S. Metabotropic glutamate receptors: potential drug targets for psychiatric disorders. Open Med Chem J. 2010;4:20-36.
https://www.ncbi.nlm.nih.gov/pubmed/21160908

McDonald-McGinn DM, Sullivan KE, Marino B, et al. 22q11.2 deletion syndrome. Nat Rev Dis Primers. 2015;1:15071.
https://www.ncbi.nlm.nih.gov/pubmed/27189754

Cardinale CJ, Wei Z, Panossian S, et al. Targeted resequencing identifies defective variants of decoy receptor 3 in pediatric-onset inflammatory bowel disease. Genes Immun. 2013;14(7):447-52.
https://www.ncbi.nlm.nih.gov/pubmed/23965943

Kugathasan S, Baldassano RN, Bradfield JP, et al. Loci on 20q13 and 21q22 are associated with pediatric-onset inflammatory bowel disease. Nat Genet. 2008;40(10):1211-5.
https://www.ncbi.nlm.nih.gov/pubmed/18758464

Steinberg MW, Shui JW, Ware CF, et al. Regulating the mucosal immune system: the contrasting roles of LIGHT, HVEM, and their various partners. Semin Immunopathol. 2009;31(2):207-21.
https://www.ncbi.nlm.nih.gov/pubmed/19495760

Wang J, Anders RA, Wang Y, et al. The critical role of LIGHT in promoting intestinal inflammation and Crohn's disease. J Immunol. 2005;174(12):8173-82.
https://www.ncbi.nlm.nih.gov/pubmed/15944326

Lin WW, Hsieh SL. Decoy receptor 3: a pleiotropic immunomodulator and biomarker for inflammatory diseases, autoimmune diseases and cancer. Biochem Pharmacol. 2011;81(7):838-47.
https://www.ncbi.nlm.nih.gov/pubmed/21295012